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Abstract. We study the existence and stability of kinks and bell-shaped solitary travelling 
waves in (1 + 1) dimensions. We prove that kinks are stable and bells are unstable; this 
yields a one-to-one correspondence between Liapunov, energetic and linear stability of 
travelling waves. Numerical examples are presented as an illustration of the above results. 

1. Introduction 

In this paper we study the existence and stability of travelling waves of the nonlinear 
wave equation ( N L W E )  

4,, - 4 x 1  - g ( 4 )  = 0. 

4 ( x ,  t )  = 4d5) ( = x - u t  

(1) 
By a travelling wave, we mean a solution of the form 

with -1 < U < 1 and 4" a real-valued function defined on the entire real axis. We will 
be concerned with two types of travelling wave solutions. 

(a) Bell solutions, or non-topological solitary waves. They correspond to solutions 
of equation (1) with symmetric boundary conditions at infinity, i.e. 

4,(5) + a as 5 -  fa. 
For a more detailed discussion see Magyari and Thomas (1984). 

conditions, i.e. 
(b) Kink solutions, or topological solitary waves, which have different boundary 

4,(5)-+ a* as € + i o 0  

with a+ # a - .  
In general, (1) does not have bell or kink solutions for an arbitrary function g. 

Berestycki and Lions (1983) found necessary and sufficient conditions on g for the 
existence of bell solutions. 
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Among the solutions of ( l ) ,  the most relevant from the physical point of view are 
those which are stable. In  studying the stability of a solution, one has to specify the 
criterion used to define stability. There are several ofthem in the literature (see Vizquez 
1982); here we mention three. 

( I )  Liapunov stability. When any initial data of the wave equation close to a 
travelling wave 4L (with respect to a specified metric in the corresponding functional 
space) give rise to configurations which are also close to 4L we will say that the solution 
is stable in the Liapunov sense. As the NLWE is invariant under the group of translations 
5 + to, dL ( 6  - 5;) is also a solution for any &,E R, and the study of Liapunov stability 
must be done in this set of solutions, known as the 4L orbit. 

(11) Energetic stability. A travelling wave solution can be considered as a critical 
point of the energy subject to the constrain of constant momentum. A travelling wave 
is called energetic stable if it is a local minimum of the energy when the momentum 
is constant. 

(111) Linear dynamical stability. A solution is dynamically stable if small perturba- 
tions d o  not destroy it. In this case we have to study the behaviour of the solution 

4(x, t ) = ~ , ( x - u v t ) + w ( x - ~ t ,  t )  

where the first-order approximation leads to a linear evolution equation for w ( 5 ,  t ) .  
We will say that 4L is dynamically stable if i w ( &  t)l remains bounded for all t. 

Sometimes a weaker requirement is also used. The invariance under translations 
of the nonlinear problem makes some solutions of the corresponding linear equation 
grow polynomially in time (zero mode). When all the solutions of the linearised 
equation exhibit no exponential growth we will say that 4' is stable. Alternatively, 4" 
is said to be dynamically unstable if there exist solutions w to the linear equation 
growing exponentially in t. The relationship between these three concepts of stability 
is still an  open problem even for systems with a finite number of degrees of freedom. 

The Liapunov and energetic stabilities in the case of travelling waves for the N L W E  

have been studied by Henry et a1 (1982) and  Zhidkov and Kircher (1985), but the 
most fundamental results can be found in a paper by Grillakis et a1 (1987). 

Equation (1) can be written as the following Hamiltonian system: 

du  
d t  
-- - JE' (u)  

where 

u = ( : ~ )  J = (  -1 0 ') 
and E ' ( u )  is the functional derivative of the energy E, defined as 

with G (  t )  = 5: d s  g(s ) .  

quantity, the momentum P :  
Since the N L W E  is invariant under space translations, there exists a second conserved 

r 
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where 

For the stability analysis of (2),  Grillakis et a1 (1987) considered the linearised operator 

( !,;ar Y") H, 3 E"( U,) - upf'( U,) = (5) 

where U, = (&,, uqh,lT and 

L, = - ( I  - u2)a2, -g'(qhc) .  ( 6 )  

They obtained the following results. 
( I )  Bell solutions. H, has exactly one negative eigenvalue, its kernel is spanned by 

(coming from translation invariance) and its positive spectrum is bounded away from 
zero. Bell solutions are unstable in the sense of Liapunov stability and they are not 
local minima of the energy subject to constant momentum. 

(11) Kink solutions. As in the previous case, the kernel of H, is only generated 
by the translation invariance of the original nonlinear system, being the lowest eigen- 
function of H, .  The positive spectrum is bounded away from zero. Kinks are stable 
in the Liapunov and energetic senses. 

These results are special cases of a more general theory which says that under 
certain assumptions on the spectrum of the linearised operator (as verified in the above 
cases), there is a one-to-one correspondence between Liapunov stability and the 
minimisation of the energy E for the considered bound state when the second conserved 
quantity is held fixed. 

In this paper we shall study the linear dynamical stability of qh, by considering the 
linearised (about U )  evolution equation 

dw 
- = JH, ( U,) w 
d t  (7) 

with w = (U, u,)~. We shall require w E H'(IW)O L'(W) in order to have perturbations 
with finite energy and finite momentum. 

We want to remark that up to now a systematic study of the linear stability of the 
NLWE has been only made for solutions which factorise the space and time dependence, 
i.e. w = w(x)e'", which is equivalent to the determination of the spectrum of H,. Here 
we study the full evolution for any perturbation w with the only restriction that 
w E H'(R)O L2(IW). 

Our mair; results are as follows. 
( I )  Bells are dynamically unstable. More precisely, there exist solutions which 

grow exponentially in time. 
(11) Kinks are dynamically stable. To the best of our knowledge, this result is new. 

We would like to show that it does not depend on the integrability of the systems. 
The proof of these statements will be given by constructing invariant subspaces for 
the linear evolution equation on which one could control the perturbation w. This 
method is due to Weinstein (1985), who studied the linear stability of bound states of 
nonlinear Schrodinger equations. 
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Our results give a one-to-one correspondence between the stability of the nonlinear 
system and the stability of the linear equation in some sense. Physically this correspon- 
dence relies heavily on the fact that the ‘kinetic energy’ j, dxl4,l’ is positive definite 
and should break down if this property does not hold. The latter is already known 
for systems with a finite number of degrees of freedom and also for spinor field models, 
as can be seen in Blanchard et al (1987). 

The paper is organised as follows. The results about necessary and sufficient 
conditions for the existence of kink solutions are given in section 2. In section 3 we 
study the linear dynamical stability of such solutions as well as bell solutions. Finally, 
in section 4 we illustrate our results with some examples. 

2. Existence of travelling waves 

Finding the travelling waves 4G of the NLWE amounts to solving the ordinary differential 
equation: 

-(1- u2)4:r = g(4,). (8) 
It is enough to study solutions in their rest frame, i.e. U = 0, because the corresponding 
solution with U # 0 can be easily obtained by rescaling (Lorentz transformation) 

Thus, in all that follows we will consider only solutions having zero velocity. We will 
also assume that g is a continuously differentiable function from R into R (in fact 
continuous locally Lipschitz would be enough for the existence). 

For bell solutions we may choose the boundary condition at infinity as zero and 
then assume that g is an odd function. 

The existence result for bell solutions given by Berestycki and Lions (1983) is the 
following. Consider the problem 

for some X,,E R. Then the following theorem holds. 

Theorem 2.1. A necessary and sufficient condition for the existence of a solution of 
problem (9) is that 

zo = inf{z > 0; G ( z )  = 0 }  (10) 
exists and g(zo)  > 0, with G ( z )  defined by G ( z )  =j i  dsg(s ) .  

If (10) is satisfied, (9) has a unique solution up to translations of the origin, and this 
solution satisfies (after a suitable translation of the origin): 
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Following the lines of this theorem, a similar result can be stated for kink solutions. 
We will assume a, = -a- without loss of generality and that g is again an odd function. 
In addition, we will require g ’ ( 0 )  > 0. 

Consider the following Neumann boundary value problem: 

- 4 “ =  g ( 4 )  4 E C“) lim $‘ (x )=O (12) 
Y - f X  

with 4’(xo) > 0 and 4(xo) = 0 for some xOe R. 

Theorem 2.2. A necessary and sufficient condition for the existence of a solution of 
problem (12) is that 

p o  = inf{p > 0; g ( p )  = 01 (13)  

exists, and G(po) > 0. 

If (13) is satisfied there exists a solution which after a suitable translation of the origin 
satisfies 

d4-X)  = -4 (x )  X € R  t14a) 

Moreover, 4 is unique (up to translations) in the sense that there is no different solution 
satisfying (14d). 

Proof: We can obtain 4 as the solution of an initial value problem for the differential 
equation (12) with initial conditions 4(0) = 0 and r$’(O) = -> 0. This solution 
exists and is unique on a maximal interval (-2,n) satisfying 4(-x)  = -4(x).  We have 
also 4’(x)  > 0 in (-2, 2 ) .  Indeed, let 4‘(xo) = 0 and xo be the first zero of 4’; then 
G(4(x0)) = G(po),  and consequently &(xo) = p o  which implies 4 = p o ,  but this is 
incompatible with +(-x) = -+(x).  

Obviously 4 is bounded, and by standard continuation arguments it is defined on 
the whole real axis. The solution 4 also satisfies the asymptotic conditions 

lim 4 ( x )  = po  and lim d’(x) = O .  
X- .X  Y - X  

Let us go on to prove that 4 is unique up to translations in the class of solutions 
satisfying 1imx+=4 = po .  

Let (1, be another solution of (12) satisfying 1imx4= (1, = p o .  After translation, if 
necessary, we have $ ( O )  = 0 and ~I,!J’~(O) = G(p,).  By the uniqueness of the initial value 
problem we conclude that & = (1,. 

Finally, we will show that condition (13) is necessary. According to the conservation 
law 

f & ’ * ( x ) +  G ( ~ ( x ) )  =fd’*(O) 

4 can be bounded by 

4 ( x )  6 G-‘(&’’((O)). 
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This property, together with 4‘(x) > 0 for x > 0, implies that 4”(x) s 0 for x > 0, and 
consequently that the lim.x+m4(x) = L exists. It can be inferred from here that g ( L )  = 0 
and G ( L )  > 0, contradicting the assumption that no such number exits. 

The case po  7 0 and G(po) s 0 is impossible because of the condition g’(0) > 0. 
0 

3. Linear dynamical stability 

In this section we study the evolution of the linear stability equation ( 7 ) .  Since it is 
enough to analyse the case U = 0, we consider the linear problem 

( 1 5 )  
dw - = JHo( ug) w 
dt w ( 0 )  = WO 

Lo = -& - g’( 40). (17) 

(a) Bell solutions. We are going to explicitly construct a solution w E X which 
grows exponentially in time. It is known (see Grillakis et a1 (1987), for instance) that 
Lo has exactly one strictly negative eigenvalue -cy’, (ao>O) with eigenfunction X o  

LOX,  = -a:xg X 0 e  H ’ ( R ) .  

If we define 

then w (  t )  is a solution of (15) with initial value 

From here l l w ( t ) l J x  = ceoLof, and we can establish the next theorem. 

Theorem 3.1. The bell solutions of the N L W E  are unstable in the sense of linear 
dynamical stability. 

Remark. Our result concerning solitary waves when a,.4 has at least a zero is consistent 
with the numerical experiments about the collisions of 94 solitary waves by Campbell 
and Peyrard (1986) in the following sense. If we assume that there are solitary waves 
of 44 such that J,.4 has at least one zero, they will be dynamically unstable. Further- 
more, if they exist they are bound states (without internal degrees of freedom) of the 
associated kinks and antikinks and even a small amount of radiation destroys such 
structure. 

(b) Kink solutions. Following the idea of Weinstein (1985), we construct a subspace 
M of X = H ’ ( R ) @ L 2 ( R )  which is orthogonal to the directions governed by the 
invariance of the nonlinear system. This subspace is defined as 

M = X n [ N g ( ( J H 0 ) * ) ] ’  (20) 
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where (JHo)* is the adjoint of JHo and N , ( A ) = u : = , N ( A " )  is the generalised 
nullspace of the operator A. By 1 we denote the orthogonal with respect to the inner 
product of Y =  L 2 ( R ) O L 2 ( R ) .  

First of all, let us determine the form of the elements of the spaces Ng(JHo)  and 
Ng ( (JHO) * 1 * 

Proposition 3.2. The spaces N g ( J H o )  and Ng((JHo)*)  can be written as 

Ng(JH0) = N ( ( J H o ) 2 )  U N ( J H 0 )  N,((JHo)*) = N((JHo)*2)  U N((JHo)*)  

and are spanned by the biorthogonal set {e,, e*}, Cf, ,h} defined as 

e, = ( 2 ' 0 )  e ? = ( *  a x 4 0  ) 
f l  = ( ;40) h = ( O  a x 4 0  ) 

where 

Proof. For kinks, the ground state of Lo is given by ax+o and Lo(a,40) = 0, where Lo 
is non-negative (see Grillakis et a1 (1987) for instance). As 

JHO=(' -Lo 0 ') 
the expression JHou = 0 implies that U - e,, and consequently N ( J H o )  = (e,). From 

we have that N((JHo) ' )  = (e,,  e'). The equation (JH0)3u = 0 leads to the equations 
- Lou2 = 0 and L&, = 0. The first one implies that u2 - ax+o and the second one that 
Lou, = From the inner product 

o =  (ax+o, ~ ~ u ~ ) ~ z =  ~ ( ~ . ~ + ~ , a ~ 4 ~ ) ~ 2  
we can conclude that A = 0 and obtain finally that U ,  - 
which proves the first part of the proposition. 

and N ( ( J H 0 ) 3 )  = N((JH0) ' ) ,  

Repeating the same calculation for 

one can obtain the corresponding result for Ng(  (.WO)*). The biorthogonality condition 
is obvious from here. 0 

The biorthogonality of Ng(JHo)  and N,((JHo)*) allows us to write 

x -- M O  Ng(JHo) .  (22) 

The evolution in Ng(JHo)  is described in the following proposition. 
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Proposition 3.3. Let w (  t )  be a solution of (15) with w o e  Ng(JHo) .  Then w (  t )  E Ng(JHo)  
for all t and 

r 

ProoJ: The representation (23) follows directly from the biorthogonality of sets {e l ,  e2} 
and Cf, ,f2}. Writing w (  t )  as 

w ( t )  = c , ( t ) e ,  + c z ( t ) e 2  

and inserting this expression into (15 ) ,  we obtain 

d,(  r )e ,  + i ,e2 = c2( t)el 

that implies c , ( t )  = c,(O) and c,( t )  = c2(0 ) t  + c,(O), which are precisely (24a) and (246). 
0 

It is now clear that if wo has a vanishing component in M, this component must 

As a consequence of proposition 3.3 we have the corollary below. 
be w ( t ) .  

Corollary 3.4. M is an invariant subspace for a( t )  = exp( t JH) .  

It is easy to check that the quadratic form Q defined by 

Q ( w ) = t W o w ,  W ) Y  

is a conserved quantity for the linear evolution problem (15). 

which is equivalent to the norm on X defined by 
Let us now show that the restriction on M of the quadratic form Q defines a norm 

l lwl lX  = 1 1  w I I I  H" IIw21/ L 2 .  

Proposition 3.5. There exist constants k , ,  k2 such that 

k , l l w 1 / 2 X ~  Q(+=k*llwlI2X 

for any W E  M. 

Prooj From equation (25) we have that 

Q ( W )  =i (Low1,  W J L 2 + f ( W 2 ,  W d L 2 .  

The existence of the upper bound is obvious. For the lower bound we use the fact 
that w E M implies ( w l ,  dxd0) L2 = 0, but Lo is strictly positive on the orthogonal comple- 
ment of its kernel, i.e. 

W 1 ) L z 3 E ( W l r  W 1 ) H 1  

for some E > 0, which implies the existence of the lower bound. 0 
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An easy consequence of proposition 3.5 is our following stability result for kinks. 

Theorem 3.6. Kinks are always stable in the sense of linear dynamical stability. 

Prooj Proposition 3.5 tell us that for any initial value wo E M the solution w( t )  can 
be bounded as 

I lw(t) l lx  cIIwoIIx (27) 

for some c > 0. 
From here it follows that ~ ~ w l ( t ) ~ ~ H ~ s  cI(woIIx.  Since w1 is bounded in H1(R) for 

all t, it is also bounded in L" for all t and the solutions in the complementing space 
grow at most linearly in time. 

4. Numerical results 

In this section we show some numerical results related to the stability of the kinks 
associated with the wave equation 

c$,, - q5xx - m 2 4  + = 0.  (28) 

Without loss of generality we can take m = 1 and A = 1 .  The numerical integration is 
accomplished with the finite-difference scheme 

4;+l-24;+4;-I 4;+1-24;+4;-1 G ( + ; + ~ ) - G ( ~ ; - ~ )  
- + &;+I- ($;-I = O  

A t 2  AX2 
(29) 

G(X)G:(X'- 1)' 

which has a conserved discrete energy given by 

L J 

The main properties of this scheme are well described in Pascual and Vazquez (1985) 
and references therein. 

We show in figures 1-5 the evolution of the initial data 
Y 

where 

xe[-b, b]. 

Equation (31) represents a kink initially at rest with a small deformation. We also 
present the evolution of the energy density of the perturbed kink. In all the figures 
a = 0.2, b = 5 and k = 3.5. 
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i -0.5: 
I 

j i t 

- l o ! ,  , , , , , , ', , , , , , , , , , I 
- 1  5 .  

-20 -10 0 10 20 
X 

Figure 1. Representation of the unperturbed solution 
d ( x ,  0) = tanh(x/&). The chain curve corresponds 
to the introduced perturbation. 

1 . 0 4  

4 
0.5: 

- 0  5 7  

-1  o+ 

0.0.2 i 

L 

i a :  

a : O  2 
1 0 :  

t .O 

t 
- 1 . 5  

-20 -10 0 10 20 
X 

Figure 2. Representation of the initial data @(x, 0) = 
t anh(x /&)+v(x)  for a =0.2. This graph is com- 
pared with the unperturbed solution (broken curve). 

0 S j  

1 i t 
-1  s i , ,  , , , . . . , , , , , . , [ + - - - - - 7 4  

-20 -10 0 10 20 -20 -10 0 10 20 

Figure 3. Evolution representation of the k ink  at ( a )  t = 500Ar and ( b )  r = 1500Ar. In all 
cases A t  = 0.025. These figures show the effect of the perturbation on the initial function 
as a small group of travelling waves that do not destroy the initial wave shape, which 
proves its stability. 

X X 

It can be seen from figures 1-5 that the kink structure is preserved under the small 
perturbation (32), in agreement with our mathematical results. 
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0 4 - 1  
1 

... 

-20 -10 0 10 20 -20 -10 
X x 

Figure 4. Energy density against x at t = 0 for a = 0 Figure 5. Energy density against x at t = 15OOAf 
(chain curve) and a =0.2. The total energy, compared with the unperturbed density (broken 
measured by the area under the curve, is curve). The total energy is a conserved quantity so 
E = 0.942 77 (a  = 0) and E = 0.955 55 ( a  =0.2). The 
theoretical value for the first case is Etheor = 4 / 3 f i =  
0.942 81. 

E = 0.955 55 for A = 0.2. 
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